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I. Introduction

Two dimensional conformal field theories have been extensively studied!}, both
for their purely mathematical interest and for their applications to critical phenomena
and string theories. An important variety of conformal field theories is Wess—Zumino—
Witten (WZQ) models.?l®] These models on higher genus Riemann surfaces provide
an elegant example examining the interacting conformal field theories. As conformal
field theories, WZW models possess the conformal symmetry that leads to existence
of Ward identities for energy-momentum tensors and implies that the modes of the
energy—momentum tensor form a Virasoro algebra. Furthermore, in WZW models
there exists, in addition to the conformal symmetry, group or Kac-Mood symmetry
that leads to existence of Ward identities for currents anh implies that the modes of
currents form a Kac-Moody algebra. One obtains mix Ward identities and combined
Virasoro and Kac-Moody algebra by Sugawara construction. The Hilbert space of a
theory is decomposed into a finite sum of irreducible representations of the algebra for

a given level and the modular invariant one-loop partition function can be obtained

from the characters of the Kac-Moody algebra.?!

Ward identities on higher genus Riemann surfaces for both energy-momentum
tensors and currents have been given.*s®] But in the current Ward identities existence
of the terms which contain zero modes of currents in the correlation functions makes
the Ward identities incomplete or unpowerful actually. In the case of the torus,
Bernard® introduced expection values with an insertion of an element of the group

G and derived the complete current Ward identities.

A new proof of the Weyl-Kac character formula has been given by Bernard in the
reference [6]. He derived a heat equation by using the Ward identities and proved that

the solution of the heat equation is just of the character given in Weyl-Kac character
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formula by means of the algebraic methods (using the affine Weyl group). Recently,
Eguchi and Ooguri gave a different proof for group SU, and their proof is “complete
physical” in the sense that only physical Ward identities and null vector fields are

used.!”]

In this paper, we generalize their method to the general simple Lie groups. Our
purpose is two—fold. Onme is to prove the Weyl-Kac character formula for general
cases in the “complete physical” way. The other is to provide a new way to calculate
string functions. The calculation of string functions is important in order to obtain
the explicit expressions of the one-loop partition functions for the WZW theories.
In many cases string functions can easily be found by using this method (analytical
method). We derive partial differential equations satisfied by characters of affine Lie
algebras in Section II. In Section III, we solve the partial differential equations for
level one. In Section IV, we show how to calculate string functions by using the
analytical method and give some concrete examples. Finally, some conclusions and

discussions are given in the last section.

II. Partial Differential Equations for Characters of Kac—
Moody Algebras

In the WZW model for simple Lie group G, the modes of currents form an un-

twisted affine algebral®

[Ji, 03] = C# 2+ Km bp_nb
i, 7] = cia.,

UrJal = C* T,

min

+ Km Sy 57" (2.1)
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where we have assumed the Cartan-Weyl bases for the finite algebra G of the group
G (we denote the group and its algebra by a same letter G whenever no confusion

arises) so that

Ci =0, C*=6,", Ccr'=6,_,a"

{e(r,a) if alm)+al*)=alt) is a root

cr (2.2)

0, otherwise
The indices %, j,etc. = 1,:--,£ and the indices r, s, etc. = £1, .- <, £Ne(Ne = (dg —
£)/2 with £ = rank G and dg = dim. @) label the cartan subalgebra H of G and the
coset G/ H respectively, and indices a, b, etc. label the generators of G. The roots of

G, correspondingly, are labeled as follows:

positive roots a), ... e

negative roots o), ... al-Ne) (2.3)
so that al~%) = —al9),

The advantage of using the Cartan-Weyl bases is that it leads to the one-to-one
correspondence between the modes and the root system of the affine algebra Gl and,
as one will see later on, it makes the derivation of the partical differential equations

for characters easier.

The ground states (tachyon states) of the theory are the highest weight vectors
of the integrable highest weight representations /(A) (with the highest weights A) of
the affine algebra G,

JiA> = 0, n>0
J3|A> = A; |[A>, A; €Z,

JIA> = 0, 5>0 (2.4)
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and the Hilbert space of the theory decomposes into a finite sum of the integrable
highest weight representations of the given level. The energy-momentum tensor is

given by the Sugawara construction:

1

TE=c+m)

2 Ju(2)J%(2) : (2.5)
where C4 is the second Casimir of the adjoint representation.

In order to derive the partial differential equations for the character of Z(A) we

need to have the current Ward identities!(58

< JU2) T (wy) - TP (wa) > — < T(2) >< T (wy) - - TP (wy) >

= Y K 8y, G®(z,w;) < TP (wy) - -+ J¥1 (w1 )T (wigy) - - - TP (wn) >

=1
+ Y GE(2,wi)CF < TP (wy) « - TP (wimy )T 4w )T (wign) - - - TP (wy) >
i=1

+ Lo < I (wy)--- J(wy,) > (2.6)

where

27 u™" U

G(z,w) = u_1+27l'i2( - )q",
n=1

e—7 — qn eY’ — qn

u = eZm'(z—w) , q= e21ri'r , (2.7)

v = 27i¢'t' | tie adjoint rep. of G, (2.8)

and L, denotes the Lie derivative on the group manifold G along the left-invariant

Killing vector €%. In eq. (2.6), the correlation functions are defined by
< J(z1) - J*(2) >= Z7 (1, 6) T, (qéo-Cc/%evJax(zl)..-Ja»(zn)) . (2.9)

Z(r,6) = Z (r, 8-+, ¢") = T, (¢"~%c/e7) (2.10)
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with CG = K‘j—K

We now derive the heat equation for characters Z(r,¢) (precisely speaking, Z =
AChA(A)('r,f,O), where S, = W -z—f- is the dimension of the field ¢, less the

trace anomaly and Ch,)(7,&,t) is the character of the representation /(A)) by using
egs. (2.5 - 2.6) and the energy-momentum tensor Ward identity

27z ——azlg:’ ¢)

=< T(¢) > (2.11)
Setting n = 1 in eq. (2.6) and using eq. (2.2), we find
<J¥(z2)J (w)> = K& (zLs-29
(e —2m) (2.12a)
+ < J:J(’) > +0(z -w) ’
< J)I(w)> = §o [K (o tm—1a %)
oA <] (2.125)
+ O(Z - w) ’
where 7; =

2mi%(n(r) = ¢**[[,-,(1 — ¢") is the Dedekind function), z, =
(ei g, = 61(7,x,) is the standard elliptic theta function and we have used!!

<Jgpo > —<JF>< 1P >=La< Py pn > (2.13)

with ¢; being the field or the current. From egs. (2.5), (2.11), (2.12), and < J§ >=
atnZ

5¢:» one obtains the following heat equation

8inZ Ne 1 8%,
2(C4+ K)2 = — K K
(Ca ) 2 or (do — 36) K — 01 ozx?

otnby () aen L 82z
+ 22 s, % o 2352' (2.14)

The heat equation has been derived in ref. [6] where it possesses the different appear-

ance. Dependence on the roots of an algebra in eq. (2.14) expresses dependence on

the algebra explicitly, which is consequence of using the Cartan—Weyl bases
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It is clear that eq. (2.14) alone cannot completely determine the character Z.
We need to have more equations in order to completely determine Z. We shall show
that such equations follow from null vector states of the theory, which are due to the

current symmetry, and the current Ward identities, eq. (2.16).

From the Kac-Moody algebra (2.1), one knows that for each given value of s and
m, one has the following SU, algebra

[Jne, Je,] = P2, (2.15a)
[P, 72| = FJZ, (2.155)

with |
P = -la(z—”z (Km — of)J5) (2.16)

For the highest weight state |A >, eq. (2.4) leads to that

P2IA >= (Km — (af,A)) |A >= M2, (K,A)|A > (2.17)

PO

It is straightforward from the integrable property of the representation and egs. (2.1)
and (2.4) to prove that

It (B, A) >= (72,,) 9 4 5= 0 (2.18)

is a null vector state. (The case of m = 1 and a{*) = the highest root of @ is discussed

in ref. [3].) For our purpose we take m = 1 and |A >= |0 >, singlet, so that

. . 2K
M = MI(K, 0) = ’MTP (2.19)
and we have null vector states
Mp+1
X3(K,0) >= (J2,) <7 J0 >=0,
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or null vector fields

)MI‘{'H'

Xk = (4 I=0 (2.20)

Now we would like to derive partial differential equations for characters of G by
using null vector fields and current Ward identities. Let us consider the case of level

one (K = 1) first. Then from eqs. (2.19) and (2.20) one has

1. Simply-laced algebras (i.e., Ay, D; and E;)

2
xi=(J4) =0 (2.21)

2. B[,Cl, and F4
X1 = (Jil)2 =0, for aleA, (2.22)
X = (J:l)a =0, for aleA, (2.23)

3. G

X = (J:l)z =0, for ofdeA, (2.24)
X1 = (Jil)4 =0, for al?eA, (2.25)

where Ay(A,) is the set of the long (short) roots of the algebras and the normalization

of a root is the same as that in Kac’s book,®! i.e.
laj? =2k, for ael,

Iaiz = 21{,/3 s, 8= max a,j,-/a,-j, for aeA,
aij 75 0

where & is the order of automorphism of the Dynkin diagram of G and a;; is the
element of the generalized Cartan matrix of the affine Lie algebra G. (We discriminate
affine and finite algebras with hat and without hat in this paper. For example, & and
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a denote a root of affine and finite algebras respectively. However, in the case that

no confusion arises we shall omit hat for the sake of simplicity.)

We use the global G symmetry in order to obtain partial differential equations

from null vectors
axig =0, geG. (2.26)

A little calculation shows

20{a{) < JLJI) > —[a P < J2 T8+ TTT0 S=0for xt = (J%,)? (2.27)

o2l < JE, (Je,J71 4 TT) > + (12,05 + JI4TE) JEy + 0TI
+I3TL T > 2080l < T JE JR S=0for x2 = (J2,)°. (2.28)

Recall that

< Jo I8 U () >= ]{ dy(y—z)_lf dw(w—z)"! f dv(v—z)" < J*(y) P (w)J(v) >
h ' (2.29)
By using the current Ward identities (2.6) and egs. (2.27), (2.28) and (2.29), we

obtain the following partial differential equations for characters:

1. Simply-laced algebras

DA z=0, s=1,---,Ng (2.30)
1 8% denb d
(2) — = 1 _ ENO) (-') ol?) _ 2.31
D =g o M2, % gat Y Grga (2.31)
2. Bl, ClaF4
D®Z =0, for oA, (2.32a)

D®Z =0, for aleA, (2.328)
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1 6301 _ E alnﬂl i 6201 + 3[1101
6, 622 2 0z, 6, 922 " g,

2
3 (Blngl) “2771] o) B 30 o O

p® = 1
)

¢ 9z, * 9 BEai

+ ofallaf) _aéiaa:iagk (2.33)

It is easy to see from the above results that the number of the modes contained

in a null vector is equal to the order of the partial differential equation derived from

the null vector and this fact is essentially due to the definition of the action of the

zero modes J§. For G = G, forth order partial differential equations will similarly be
derived and we shall not further discuss G, hereafter for the sake of simplicity.

The same procedures can be applied to cases of higher level and the partial dif-
ferential equations of the higher order will be obtained. For instance, at level K = 2,
we have the partial differential equations of the third order for simply-laced algebras
and those of the third and fifth order for B;,C,; and F;. The reason of increase of
the order with increasing K is that the number of the modes (J?,) contained in null

vectors increases with increasing K (see eqs. (2.19, (2.20).

ITI. Solutions of Partial Differential Equations for K =1

The partial differential equations (2.30) for simply-laced algebras or (2.32) for
B;,C; and Fy are not independent because the number of the equations is Ng =
(dg — £)/2, the number of the positive roots of the algebra G (it is easy to see
that the substitution al®) — al~*) leads to the same equation), and it exceeds the

number of variables, £, except for the case of A;. The number of independent partial
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differential equations depends on the structure of G. Given é, one can find out the

independent ones from the partial differential equations.

We now combine the heat equation and the set of the partial differential equations

originated from null vectors and find the solutions of these equations for simply-laced

algebras and B,.

1. Simply-laced algebras

For K = 1, we have N¢ partial differential equations (2.30). Summing these Ng

equations, one obtains

where we have used

% 19% 08 (1 02

|6, 0z2 fz, ' Z 8¢
1 & 82z

—3(deg —&)m +Ca — ry e (3.1)
Z g: 9

Ng
> of of) = Cu 8

=1

(3.2)

Taking K = 1 in eq. (2.14), one has

dtnZ
Ami
(Ca+1)4mi 57

S [L 8%, dtnby ()1 0Z

Substituting eq. (3.1) into eq. (3.3), we obtain

Note that for simply-laced algebras,

£+ 1§, Bz2 8z, ' Z 88
1 & 82z
L 3.3
dnZ 1 & 822
: _ 22 3.4
(CA + 1) 4w ar 2degm + (CA +1) 7 Z; 8¢ (34)
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From egs. (3.4) and (3.5), we have finally

i 00'2) & O (1'2) (3.

or = 9
Thus we obtain the following solutions:
Z = M (3.7)
n4(r)
where
oA (T, E,t) = e—Zﬂ't Z e-;rir|a|’-—2m'(a1£1+°"+a¢£‘) (3.8)
aeM+A

is the classical theta function of degree 1 (with characteristic A).[®! These are exactly

the characters for G = AEI), Dgl) and E’t(l) which have been given by Kac.[®!
2. B,

Because a,(') = §, for al?)eA,, the eqs. (2.32b) decouple, i.e., one has the £

independent equations each of which contains only the partial differentials for one

variable:
11 3201 3 3!1}.01 1 3201 3£n01
(EE 987 T3 o9& 8, ot¢ T M g )Z
3tnb,\* 8Z _ 8Inb, 8°Z 93z
3[( 86‘) _21] o8 o aem oo "
i = 1,---,L. (3.9)

(Note that now z, = o = g0,5 = 1,---£.) Therefore the solutions assume the

factorized form ,
Z(rn§)=0()]l £ (r, &) (3.10)

Substituting eq. (3.10) into eq. (3.9), we obtain the £ same third differential equations
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for f; and the solutions of the equation are

fi (Tyfi) =0 (Ta él) ) m=2,3,4 (3'11)

where 0, is the usual theta function on torus.'®l The unknown function C(7) of eq.

(3.10) can be determined by the heat equation

L 1
. 0tnZ [_47ri3£n017(-1',£ ) 2(Ca—1)m

(Ca+1)4mi 5 = 3 5

i=1
9 otnby(r, &) dtnZ o, L _32_Z]
agi agi AT

+ (3.12)

where we have used
3201(T,C) — 473 aol(TaC)

a¢? or
From eqs. (3.10), (3.11) and (3.12) we finally find the solutions as follow:

(3.13)

T = ,,.(-r) f[ On(T,€), m=2,3,4 (3.14)

i=1

with

Ca(r) = 7~ I(r)n(2r)
Cs(r) = n7'(r/2)n*“(r)n~(27)

and Cy(1) = 7~ H(r)p(r/2) . (3.15)

By linearly combining, the solutions can be written in a familar form, i.e.

ZAt CA\:(T)aAL(Ta f)

Za,

Cﬁ: (T)aAo (T’ 6) + Clit\: (T)oAx (Ta 6)

Zn, = CR1Os, +Chiby, (3.16)
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Chi—cp = s, CAl +Cp = Oy, cAz_cz,
Cr = Cpr, Coh=cp (3.17)

where Ay, Ao and A; are all integrable representations of level one of B,. Eq. (3.16)
is exactly the Weyl-Kac character formula at K = 1 for B,.

IV. Calculations of String Functions

The algebraic methods and some results of calculating string functions have been
given by Kac and Peterson.'yl] Here we show by means of some examples how to
calculate string functions by using the analytical methods (i.e., using the partial

differential equations for characters).

Now our start point is the Weyl-Kac character formula

Zp(1,86,0) = > CR (1) Ox (1, 8) (4.1)

K
AeP i

where 6, is the classical theta function of degree K (see eq. (3.8) for K = 1) and
our purpose is to find out the unknown string functions C{(7). Let us denote the eq.

(2.14) by

(0A+K)4m'a—z=pz, (4.2)
ar
dfnb, N Ne 1 8%,
+(dg—3)Kn—-K Y — . (4.3
b= Eae’ Z 52, 1 og Tl EMK 2 g Gy ()

Substituting Z = C(7)f(r,£) into eq. (4.2), one has

(Ca + K)4mi dz;:c 1 (D — (Ca + K)4rmi _a_) f. (4.4)

f or
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Because the left hand of eq. (4.4) is independent of variables ¢1,- -, ¢4, the right
hand of eq. (4.5) should also be so. Therefore, we can calculate it at any values of

€',---,¢" and the easy way is calculating it at 1 = ... = ¢/ = 0 (we shall write ¢ = 0
instead of £' = ... = ¢ = 0 for the sake of simplicity). Thus we have
‘. 0%*f 0tnby(r,z) af G
Df |¢=o = ; 5&7 le=o +2 e |2=0 g le=o Py
8¢nb,(r,0
+ |(dg —3¢) Kny, — K4mi __’"'_611(-2_) Ne| f(7,0) (4.5)
where
Ng
PE=3Y ofY. (4.6)
=1

We now turn to some examples.
a. Bt(l)

The spinor representation of level one of Bl(l) is labeled by the highest weight
Ay = (0,A,) with

L
A= (011) =3 % ol | (4.7)

where al9) is the simple root of B;. From eq. (3.8) one has

0x, = I 03( &%) (4.8)

j=1

Taking K = 1 and f = f,, in eqs. (4.4) and (4.5), a straightforward calculation

shows

dénn(T)

dr

the right hand of eq. (4.4) = 47ri[ —2{(£+1)

+ 2¢ (4.9)

dln;]"(-ZT)] .
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Thus we find

C(r) = 7 (r)p(2r), ;up to a multiplicable constant . (4.10)

b. DV

Consider the fundamental representation / (AI) of K =1 of DEI) with A, =
(0104°1) = (0,A1), Ay = (10°°) = ;. From eq. (3.8) one has

6 —1(10 i la i 4.11
=3 (I 3(T,g)_g4(f,g)). (4.11)

The calculation will be very complicated if one substitutes directly Z,, = Cﬁ; 64, into
eq. (4.2) since eq. (4.11 is of a non—factorized expression. Fortunately, because the

operator D is a linear operator we can use the principle of superposition for solutions.

Recall that

Zr, = CR(T)0a,, Ao=(1,0%, Ag=(0%

0a,

J/ {
3 (e e+ o)) (4.12)

i=1

and C4° = C}!. From egs. (4.11) and (4.12), one has

A
Zp, + Zy, = CRH1) [] 0a(7, &) - (4.13)

i=1

Substituting eq. (4.13) into eq. (4.2), one can easily find
Cit =n747), (4.14)

as expected.

c. C:gl)
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There are £ + 1 representations of level one of C’t(l) and the calculation of string

functions for C’l(l) is still an open problem./®! Here we report the results for £ = 3 and
the calculation for arbitrary £ is in progress.

The highest weights of the K = 1 representations for Cgl) are AO,AI, A; and As.
As an example, let us focus our attention to L(A3). According to the Weyl-Kac

character formula (4.1), one has
Zy, = Cpx, +C36,, (4.150)

= Cp(0a, + R(7)84,) , (4.15b)

where 65, and ), can be expressed as

= 0 () (0 (513) (5 8) =5 (58 (5.043)

(4.16)
=5 8) 0 ) ea) - () ()
(4.17)
with

6. = -;-(03 +6,) (4.18a)
8o = %(03 ~ 8,) 4.185)

From egs. (2.32b) and (4.15b), we obtain
R(r)= —ﬁg;z:‘ : (4.19)

By using eqs. (2.33), (4.16), (4.17) and (4.19), it is straightforward to derive that

R(r) — —2e(9) (65 (0) £.(0) — 562(0)0u(0))
5(0) (263(0) + 362(0)) — 62(0)0. (0)4o(0)

(4.20)
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where we write 8,.(0),82(0), etc. instead of 8.(r,0), i%’—c(;'—’g l¢=0, etc. for the sake of
simplicity. Setting K = 1 and f = 85, + R(7)f,, in egs. (4.4) and (4.5), we find by

the straightforward calculation

Cls = g~ 21/5 gl exp {_g ‘fi_f.e—_AiO)dT} - (4.21)
where
¢ = 0,5,(0) + RO, (0) = (2 + R) 62(0)8,(0) + R83(0) . (4.22)

Finally, according to the definition of R (see eq. (4.15)), we have

Ci} = RCP (4.23)

V. Discussions

In summary, we have derived the partial differential equations for characters of
Kac-Moody algebras by using the current and conformal Ward identities, Sugawara
construction and the null vectors of Kac—-Moody algebras. For level one representa-
tions of Agl), D?), El(l) and Bl(l), we have given the solutions of the partial differential
equations and consequently gave a complete “physical” proof of Weyl-Kac character
formula in these cases. The partial differential equations for other affine algebras and

higher levels can also be solved and we leave it in the future.

The number of the partial differential equations, in general, is larger than that
of the independent variables. We know from the origin of these equations that they
all are consistent with each other. But, unfortunately, there is no general way by
which one can determine the number of the independent partial differential equations.

The number depends on the specific algebra. Given an algebra, one can find out the
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independent ones from eq. (2.30) or (2.32) and solve them so that the all independent

solutions can be found.

For higher level, we need to solve the partial differential equations of higher orders.
Although there is no principled difficulty to solve them, the concrete solving will be
technically complicated. Alternatively, we can use the method of decomposing of a
direct product representation and obtain the characters of higher levels from those
of the lower ones, as discussed in ref. [7] for @ = A{". Nevertheless, this makes the

proof be not completely analytic again.

A generalization to semi-simple algebras and the twisted affine algebras is straight-
forward. By using the super current and super conformal Ward identities on the
supertorusl*?l, one can also generalize the methods of this paper to super characters.
As for generalization to higher genus (¢ > 1) Riemann surfaces, there is much work

to do.
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